ER OUALITY REPORT

FOR BLOOMINGTON, MN • 2009 TEST RESULTS

UNE 2010

INSIDE

Where does your tap water come from?

WQR3. FAQs.

WQR4. 2009 Water quality

results.

ENSURING YOUR SAFETY BLOOMINGTON'S WATER SURPASSED ALL REQUIREMENTS

t the City of Bloomington, our goal is to provide you with high-quality, safe, reliable drinking water that meets every federal and state water quality requirement. This report contains information about the sources, treatment process and history of our water system. Page WQR4 provides the results of water quality monitoring on Bloomington's water sources from January 1 to December 31, 2009, by the Minnesota Department of Health, the city of Minneapolis and our own laboratories. We also answer common questions people have about our water. This report is meant to advance your understanding of drinking water and heighten awareness of the need to protect precious water resources.

GET INVOLVED

our water meets all federal, state and local guidelines. Public Works welcomes input on water quality issues. For information, contact Water Quality Supervisor Jon Eaton at 952-563-4501.

If you have questions about your water or need assistance, please give us a call or visit our website. When you see WEBSITE KEYWORDS in this report, visit our website at www.ci.bloomington.mn.us for more information.

Water Plant (24 hours a day) 952-563-4905

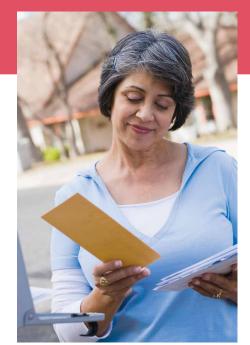
TTY (8 a.m. to 4:30 p.m., M-F)

Este informe contiene información muy importante. Si necesita una traducción del mismo, sírvase llamar al 952-563-4944 V/TTY.

Bản báo cáo này có các thông tin rất quan trọng. Nếu quý vị cần bản dịch tiếng Việt, xin gọi số 952-563-4944 V/TTY.

Warbixintaan waxaa ku jira macluumaad aad muhiim u ah. Haddii aad u baahan tahay in laguu turjumo, fadlan la xiriir 952-563-4944 V/TTY.

HERE TO SERVE TECHNOLOGY IMPROVES CUSTOMER SERVICE


id you know that Utility Billing processes more than 180,000 bills for more than 27,000 customer accounts and the Utilities Division processes more than 2,000 service orders annually? That's a lot of action on a system that was purchased more than 40 years ago, which is why Utilities and Utility Billing recently implemented a new integrated Customer Information System to streamline operations and better serve the City's customers.

Implementation of the new software represented a milestone achievement after years of discussion about the need to update and integrate the aging software system.

However, the process proved quite challenging. According to Assistant Utilities Superintendent Glen Gerads, converting all the data proved a daunting task.

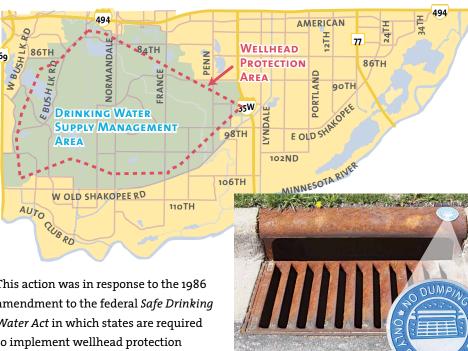
"The system was tested for months to ensure that customers would receive timely and accurate bills when the system was introduced," Gerads said. "Comprehensive training was provided for Utilities and Utility Billing staff in the use of the new software application."

The benefits of the new software are extensive and include the ability for Utilities staff to combine older software systems into one robust customer service environment.

For more information, contact Assistant Utilities Superintendent Glen Gerads at 952-563-8775.

PROTECTING OUR PUBLIC WATER SUPPLY

EVERYONE BENEFITS FROM WELLHEAD PROTECTION


n its ongoing effort to protect the wellhead, Utilities embarked on a project in the summer of 2009 to label all storm water catch basins within a 5,000 foot radius of the city's six groundwater wells. In fact, Utilities installed 2,200 storm drain markers within the earmarked area, see photo right. The storm drain markers, which display the words "No dumping, only rain in the drain," were installed over a three-month period. The markers are displayed on both public and private storm sewer infrastructure inlets as a reminder to people to help protect our community's valuable drinking water resource.

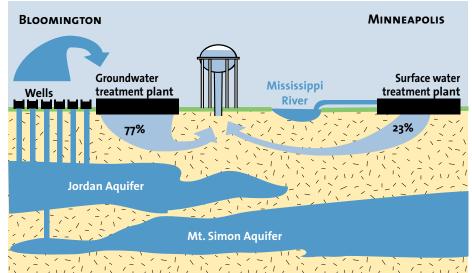
Wellhead protection prevents contaminants from entering the area that contributes water to the public water supply well or well field. These areas are determined by geologic and hydrologic criteria, such as the physical characteristics of the aquifer and the effects that pumping has on the rate and direction of groundwater movement. A management plan is developed for the wellhead protection area that identifies potential sources of groundwater contamination, monitors for the presence of specific contaminants, and manages existing and future land and water uses that pose a threat to groundwater quality.

The Minnesota Groundwater Protection Act of 1989 granted the Commissioner of Health authority to develop wellhead protection measures for wells serving public water supplies; this rule does not apply to private wells. This action was in response to the 1986 amendment to the federal Safe Drinking Water Act in which states are required to implement wellhead protection programs for public water supply wells. Minnesota Rules, parts 4720.5100 to 4720.5590, constitute the Minnesota Wellhead Protection Program.

While a wellhead protection plan gives owners of public water supply wells a useful "tool" for providing a safe drinking water supply to their customers, the long-term goals are beneficial to all residents of Minnesota. These goals reduce the use of costly treatment facilities and avoid the need to drill new wells or clean up contaminated groundwater.

If you would like more information about wellhead protection, contact Glen Gerads at 952-563-8775 or the Minnesota Department of Health Source Water Protection Unit at 651-201-4700.

If you have noticed the above marker on a storm drain near your home, it is especially important to manage all sources of pollution on your property. Street litter, motor oil, antifreeze, pesticides, herbicides, fertilizers, yard and pet waste, and paint are pollutants that could find a way into the drinking water source.


YOU CAN HELP

SAFEGUARD WATER

Use hazardous products as directed and dispose of them properly. Questions on proper disposal can be directed to Hennepin County at 612-348-3777.

WHERE DOES YOUR TAP WATER COME FROM?

2010 UPDATE

The City of Bloomington monitors the public water supply more frequently than required by law, performing approximately 430 analyses on the public water supply per day, or more than 158,000 per year.

On Thursday, February 4, 2010, during the analysis of regular weekly samples, laboratory staff noted a chemical compound above the maximum contaminant limit. Staff traced the chemical to the treatment plant and immediately shut it down. The plant was decontaminated and was back in service within two weeks.

For more information on this incident, visit our website.

WEBSITE KEYWORDS: CONTAMINANT.

emodeled in 2002, the Sam H. Hobbs Water Treatment Plant can **23 PERCENT IN 2009** produce up to 14 million gallons

BLOOMINGTON WELLS 77 PERCENT IN 2009

of treated, drinkable water per day.

The City's water plant draws raw (untreated) groundwater from six deep wells. The wells extend downward between 376 and 963 feet into the Jordan. Prairie du Chien-Jordan. Franconia-Mount Simon and Jordan-St. Lawrence Aquifers, porous underground rock formations that hold vast amounts of water. The Midwest has a very rich water supply.

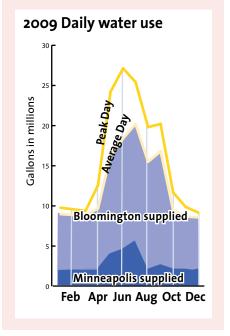
The City drew 3.6 billion gallons of water, 77 percent of Bloomington's needs, from these deep groundwater wells in 2009.

MISSISSIPPI RIVER

To meet demand in excess of our production capabilities during peak periods, Bloomington purchases treated water from the city of Minneapolis. Treated water from our plant is blended with similarly treated water from Minneapolis and sent throughout Bloomington's distribution system. All of our consumers receive a blend of water from these two sources.

Minneapolis' surface water treatment plant takes its raw water from the Mississippi River. In 2009, the City purchased 1.0 billion gallons of water from Minneapolis, which supplied the remaining 23 percent of our water needs.

WEBSITE KEYWORDS: WATER TREATMENT PLANT.


OUR WATER TREATMENT PROCESS

How much is used?

n 2009, residents and businesses in Bloomington used 4.6 billion gallons of water, about the same as 2008. The average was 12.6 million gallons of water per day last year.

The chart below shows the peak day and average day of water use for each month during 2009, as well as the average amount of water treated at the City's plant and purchased from Minneapolis. To get a more accurate picture of the actual amounts of water consumed, peak day data was adjusted to account for fluctuations in our reservoir levels.

WEBSITE KEYWORDS: WATER USAGE.

Treatment begins when lime, in the form of slakened quicklime, is mixed with raw water in one of the City's two contact solids basins. Each basin holds about half a million gallons of water.

The lime-and-water mixture causes the pH in the basins to rise, and calcium and magnesium (the main components of hardness) to form insoluble particles called flocs. As these floc particles grow in size, they settle to the bottom of the contact solids basins. The solids are removed, dewatered and used as

a USDA-approved source of lime by

Minnesota farmers to stabilize the

pH in farm fields.

The water enters a recarbonation basin where it is adjusted to the proper pH by adding carbon dioxide. A precise amount of chlorine is added to discourage bacterial growth as the water travels through the City's distribution system.

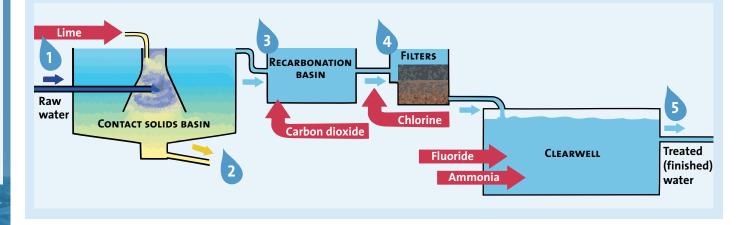
The water is filtered to remove any remaining particles. Then it enters an underground reservoir called a clearwell where small quantities of fluoride and ammonia are added. Because fluoride promotes strong teeth and bones, fluoridation is mandated by State law at a dosage of 0.9 - 1.5 ppm. Ammonia works with the chlorine as a disinfectant. Now softened and disinfected, the water is ready for use by residents and businesses.

IS THE WATER SOFT?

Bloomington is one of the few water utilities in Minnesota that supplies softened water, saving consumers time and money. Untreated groundwater enters the water plant with a hardness of about 19 grains (320 parts per million). Our treatment process reduces the water's hardness to about 5.2 grains (90 parts per million).

The finished water from the City's treatment plant is pumped into the distribution system, where it is mixed with treated water purchased from the city of Minneapolis.

WEBSITE KEYWORDS: TREATMENT PROCESS.


A CAREER IN THE WATER INDUSTRY IS WAITING FOR YOU!

t. Cloud Technical College's **→** Water Environment Technologies (WETT) program provides you with the skills you need to land a great job in this rapidly growing industry.

There are many benefits to this program:

- Hands-on learning.
- 12-month program.
- Metro and St. Cloud locations.
- 100 percent placement rates.

CALL ST. CLOUD TECHNICAL COLLEGE TODAY AT 1-800-222-1009, EXT. 5952

SHOULD I GET A WATER FILTRATION SYSTEM FOR MY HOME?

Because Bloomington's water surpasses all federal and state standards, home filtration systems are not necessary. However, if you choose to purchase a filtration system for aesthetic or medical reasons, keep the following in mind:

- Find out if the filter you are considering is capable of removing substances that concern you.
- Look for filters that have been certified by NSF International (an independent testing group) and Underwriters Laboratory (UL).
- Follow the manufacturer's maintenance instructions carefully. When not properly maintained and serviced, filtration systems can harbor disease-causing bacteria that are not otherwise in the City's water supply.

Do I NEED A HOME WATER SOFTENING SYSTEM?

ur lime-softening process removes most of the hardness in Bloomington's water, reducing it from 19 grains per gallon (raw water) to about 5.2 grains per gallon (finished water). The water is also treated to be noncorrosive. This helps prevent unsafe levels of lead and copper from leaching into the water from home plumbing. Home softening systems can further reduce water hardness, usually by adding a small amount of sodium.

OTHER QUESTIONS?

Feel free to contact us at any time with your questions about drinking water. Call the Water Treatment Plant at 952-563-4905.

WEBSITE KEYWORDS: WATER FAQS.

FREQUENTLY ASKED QUESTIONS ABOUT BLOOMINGTON'S WATER

WHY IS THE WATER FROM MY FAUCET CLOUDY?

ccasionally we receive calls reporting water that appears cloudy or milky. Usually indicating the presence of either oxygen or calcium, cloudy water is perfectly safe to drink.

Oxygen in water: Sometimes water fresh from the tap appears cloudy. Within a minute or two, the cloudiness rises toward the top of a glass and before long the whole glass is crystal clear. This is caused by excess oxygen escaping from the water.

Changes in water temperature and pressure can cause the oxygen dissolved in it to reach a "supersaturated" state where more oxygen is in the water than it can hold. When the water passes through a faucet, the disturbance is enough to release the excess oxygen out of the water, forming microscopic bubbles. The bubbles are so tiny that it takes them a long time to rise through the water. No harm will come from using oxygenated water and you need not take any corrective action if you experience it.

Calcium in water: The chemistry of water is surprisingly complex and many factors influence how it behaves. We treat Bloomington's water so that it is slightly prone to deposit a trace of calcium sediment as it travels through our distribution system. This helps keep our water from becoming corrosive and reduces the likelihood that it might attack water mains or leach lead or copper from our customers' plumbing and fixtures. See below. Usually, this calcium sediment remains at the bottom of the water mains, unnoticed by our water users.

However, the calcium can be stirred up when a large volume of water is drawn through a water main in a short time. Events that can increase water velocity include firefighting, water main breaks, hydrant maintenance and filling water or street-cleaning trucks' tanks at a hydrant. If you happen to turn on your cold water right after such an event, you may draw some of the stirred-up water into your pipes.

When calcium causes cloudiness, it is usually noticed in cold water. Let a glassful of the cloudy water sit for about 30 minutes and the calcium, appearing as a white or grayish substance, may settle to the bottom of the glass. Though it may be visually unappealing, such water is perfectly safe to drink or use for cooking.

To clean calcium sediment from your system, we recommend that you wait an hour or two to allow the water in the main to settle. Then, open a large faucet, such as a bathtub faucet, and let the cold water run for about 20 minutes. This will draw clean water through your system and should remove any remaining calcium from your pipes.

Please call us if you have any concerns or if your water remains cloudy after taking these steps.

WHAT CAN I DO TO MINIMIZE EXPOSURE TO LEAD?

The presence of lead ranks among the most common health concerns people have about drinking water.

Recent studies suggest that levels of lead once thought to be safe can pose dangers, especially to unborn babies and children. Fortunately, over years of regular and rigorous monitoring, the City of Bloomington's water has never been found to be a significant source of lead.

In fact, lead pipes, solder, brass faucets and other plumbing in your home pose the greatest threat of adding dangerous levels of lead to your water. A few simple practices can minimize your exposure to lead from your home. First, always use cold water for your cooking and drinking. If your plumbing contains lead, hot water will draw more lead out of it. Second, allow your cold water to run for 30 seconds to two minutes. This flushes out any water that may have been in your pipes long enough to pick up higher concentrations of lead.

For more information, call the Safe Drinking Water Hotline at 1-800-426-4791 or visit www.epa.gov/safewater/lead. If you are concerned about your home's lead levels, our laboratory can test your water for a fee.

Each day the sun evaporates a trillion tons of water.

A single tree can give off 70 gallons of water per day in evaporation.

An acre of corn can give off 4,000 gallons of water per day in evaporation.

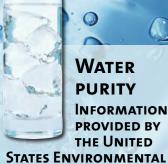
A small drip from a faucet can waste as much as 20 gallons of water a day.

WATER FACTS © LENNTECH WATER TREATMENT & PURIFICATION HOLDING B.V.

IMPORTANT INFORMATION

FOR PEOPLE WITH COMPROMISED IMMUNE SYSTEMS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people, such as people with cancer undergoing chemotherapy, people who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants, can be particularly at risk of infections.


These people should seek advice from their health care providers about drinking water. Environmental Protection Agency and Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline: 1-800-426-4791.

LEAD IN WATER

f present, infants and children who drink water containing lead in excess could experience delays in their physical or mental development. Children could show slight deficits in attention span and learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

Lead in drinking water is primarily from the components associated with service lines and home plumbing. The City is responsible for providing high quality drinking water, but cannot control the materials used in plumbing. When your water has been sitting for hours, minimize potential lead exposure by flushing the tap for 30 seconds to two minutes. If you are concerned about lead in your water, you may have your water tested.

Information on lead in drinking water, testing methods and steps to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

PROTECTION AGENCY

rinking water sources in the United States, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over or through the ground, it dissolves naturally occurring minerals and, sometimes, radioactive material. Water also picks up substances resulting from animal or human activity.

To ensure that tap water is safe to drink, the Environmental Protection Agency (EPA) regulates the amounts of certain contaminants in water provided by public systems. The Food and Drug Administration regulates contaminants in bottled water to provide the same public health protection.

Drinking water, including bottled water, may be expected to contain reasonably small amounts of some contaminants. Their presence does not necessarily indicate that the water poses a health risk. Information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE UNTREATED WATER

icrobial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, can occur naturally or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming.

Pesticides and herbicides come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.

Radioactive contaminants can occur naturally or be the result of oil and gas production and mining activities.

2009 WATER QUALITY RESULTS

he Minnesota Department of Health and City staff regularly test samples of Bloomington's water for many contaminants. No contaminants were detected in 2009 at levels that exceeded state or federal standards. See 2010 Update on page WQR2. Some substances were detected in trace amounts below the maximum allowed in drinking water. Only those substances that were detected appear on the table; many results are not listed because the substances were not found at any time in 2009 by tests designed to detect them. Some substances are tested less than once per year; in such cases, the most recent results and the test dates are reported.

Some contaminants do not have Maximum Contaminant Levels (MCL) established. These "unregulated contaminants" are assessed using federal standards known as health risk limits to determine if they pose a threat. If unacceptable levels of an unregulated contaminant are found, the response is the same as if an MCL has been exceeded; the water system must inform its customers and take corrective actions.

The table's upper portion summarizes test results performed on Bloomington water. The lower portion shows results for Minneapolis water because we blend Minneapolis treated surface water with our water plant's treated groundwater.

The Minnesota Department of Health has made a determination as to how vulnerable Bloomington's source water may be to future contamination incidents. If you wish to obtain the entire source water assessment, please call 651-201-4700 or 1-800-919-9318 (and press 5) during normal business hours, or view the assessment online at www.health.state.mn.us/divs/eh/water/swp/swa.

Monitoring for unregulated contaminants was conducted in 2009 as required by the U.S. Environmental Protection Agency Rules, 40 CFR 141.40. Results of the unregulated contaminant are available upon request from Cindy Swanson, Minnesota Department of Health, at 651-201-4656.

Detected substance	Amount detected	Allowed (MCL)	ldeal (MCLG)	Typical source of substance	Туре	Meets standards?
CITY OF BLOOMINGT	ON					
Arsenic (ppb) (09/05/2006)	1.7	10	o	Erosion of natural deposits	R	Yes
Chlorine (ppm)	Avg. = 2.1 (1.9 to 2.6)	4 MRDL	4 MRDLG	Water additive used to control microbes	R	Yes
Copper (ppm) (06/03/2008)	o.o2 (o of 30 sites over AL)	AL = 1.3	NA	Corrosion of household plumbing systems; erosion of natural deposits	R	Yes
Fluoride (ppm)	Avg. = 0.93 (0.79 to 0.95)	4	4	Added for strong teeth/bones; erosion of natural deposits	R	Yes
Haloacetic Acids (HAA) (ppb)	Avg. = 0.1 (nd to 0.4)	60	o	Chlorination by-product	R	Yes
Lead (ppb) (06/03/2008)	4 (o of 30 sites over AL)	AL = 15	NA	Corrosion of household plumbing systems; erosion of natural deposits See page WQR3.	R	Yes
Sodium (ppm) (07/03/2008)	5.4	U	U	Erosion of natural deposits	U	Yes
Sulfate (ppm) (07/03/2008)	12.6	U	U	Erosion of natural deposits	U	Yes
Trihalomethanes (TTHM) (ppb)	Avg. = 0.9 (0.6 to 1.6)	80	o	Chlorination by-product	R	Yes
CITY OF MINNEAPOL	ıs					
Chlorine (ppm)	Avg. = 3.3 (3 to 3.4)	4 MRDL	4 MRDLG	Water additive used to control microbes	R	Yes
Copper (ppm)	o.o7 (o of 51 sites over AL)	AL = 1.3	NA	Corrosion of household plumbing systems; erosion of natural deposits	R	Yes
Fluoride (ppm)	Avg. = 1.0 (1.0 to 1.1)	4	4	Added for strong teeth/bones; erosion of natural deposits	R	Yes
Haloacetic Acids (HAA5) (ppb)	Avg. = 26 (10 to 35)	60	o	Chlorination by-product	R	Yes
Lead (ppb) (8/14/2006)	2 (1 of 51 sites over AL)	AL = 15	NA	Corrosion of household plumbing systems; erosion of natural deposits	R	Yes
Sodium (ppm) (07/03/2008)	9.9	U	Ū	Erosion of natural deposits	U	Yes
Sulfate (ppm) (07/03/2008)	26	υ	U	Erosion of natural deposits	U	Yes
Trihalomethanes (TTHM) (ppb)	Avg. 33 (15 to 50)	80	o	Chlorination by-product	R	Yes
Turbidity (NTU)	Max: 0.4 (limit met 98.9%)	TT	NA	Soil runoff	R	Yes

KEY

R

MCL Maximum Contaminant Level.
The highest level allowed in drinking water. MCLs are set as close to MCLG as feasible using the best available treatment technology.

MCLG Maximum Contaminant Level
Goal. Below this level there is
no known or expected health
risk. MCLGs allow for a margin
of safety.

U Unregulated, but monitoring is required by the State of Minnesota. No limits have been set for this compound.

Regulated.

IA Not Applicable.

AL Action Level. An amount that, if exceeded, triggers a specific response that a water system must follow.

TT Treatment Technique. A required process intended to reduce the level of a contaminant.

ppb Parts Per Billion. Units of a substance, in pure form, found in every billion units of water.

ppm Parts Per Million. Units of a substance, in pure form, found in every million units of water.

NTU Nephelometric Turbidity Unit.
A measure of water clarity.

MRDL Maximum Residual Disinfectant Level.

MRDLG Maximum Residual
Disinfectant Level Goal.

90% This is the value obtained after disregarding the 10 percent of the samples taken that had the highest levels.

cfu Colony Forming Unit.nd No Detection.